

In the picture, two circles (one small and one big) intersect each other at $A \& B . C$ is any point on the major arc $A B$ of the smaller circle. $A C \& B C$ are joined and produced to meet the bigger circle at $D \& E$ respectively. M \& N are points on minor arcs AC \& BC respectively of smaller circle such that $C E=C M$ and $C D=C N$. AN \& BM intersect at O CP $\perp A N$ and $C Q \perp B M$ are drawn. Prove: $O P=O Q$.

Question framed by DR. M. RAJA CLIMAX
Founder Chairman, CEOA Group of Institutions

Solution :

Before giving the proof, let us bring out a common feature about altitude as below.

In $\Delta \mathrm{PQR}$, if PS is an altitude to the side QR then,
$P S=\frac{P Q \times P R}{d}$ where ' d ' is the diameter of the circumcircle. This is proved as follows.

Construction :

Draw the diameter PT through the circumcentre 'M'. Join QT.
Now, in $\triangle P S R \& \triangle P Q T$
$\angle P S R=\angle P Q T=90^{\circ}$.
$\angle P R S=\angle P T Q \quad$ (angles in the same segment)
$\therefore \triangle P S R \& \triangle P Q T$ are similar.
$\frac{P S}{P Q}=\frac{S R}{Q T}=\frac{P R}{P T}$
$P R \times P Q=P S \times P T$

$$
\text { ie } \mathrm{PS}=\frac{P R \times P Q}{P T}
$$

ie Altitude $\mathrm{PS}=\frac{P R \times P Q}{d}$

Now, let us take the given problem

Construction:

Join OC
\Rightarrow
Applying the above formula
$C P=\frac{C M \times C N}{d}$
And $\mathrm{CQ}=\frac{C M \times C B}{d}$
But $\mathrm{CM} \times C B=C E \times C B$
And $\mathrm{CN} \times C A=C D \times C A$
And $\mathrm{CA} \times C D=C E \times C B$
$\therefore(1),(2),(3),(4) \&(5) \longrightarrow$
$C Q=C P$
$\Rightarrow \triangle C O Q \& \triangle C O P$ are congruent [One side \& Hypotenuse are equal]
$\therefore O P=O Q$

