

In the picture, two circles (one small and one big) intersect each other at A & B. C is any point on the major arc AB of the smaller circle. AC & BC are joined and produced to meet the bigger circle at D & E respectively. M & N are points on minor arcs AC & BC respectively of smaller circle such that CE = CM and CD = CN. AN & BM intersect at O. CP \perp AN and CQ \perp BM are drawn. Prove: OP = OQ.

Question framed by DR. M. RAJA CLIMAX Founder Chairman, CEOA Group of Institutions

Solution :

Before giving the proof, let us bring out a common feature about altitude as below.

In Δ PQR, if PS is an altitude to the side QR then,

 $PS = \frac{PQ \times PR}{d}$ where 'd' is the diameter of the circumcircle. This is proved as follows.

Construction :

Draw the diameter PT through the circumcentre 'M'. Join QT.

Now, in $\triangle PSR \& \triangle PQT$

 $\angle PSR = \angle PQT = 90^{\circ}.$

 $\angle PRS = \angle PTQ$ (angles in the same segment)

 $\therefore \Delta PSR \& \Delta PQT$ are similar.

 $\frac{PS}{PQ} = \frac{SR}{QT} = \frac{PR}{PT}$

$$PR \times PQ = PS \times PT$$

ie
$$PS = \frac{PR \times PQ}{PT}$$

ie Altitude
$$PS = \frac{PR \times PQ}{d}$$

Now, let us take the given problem

Construction:

Join OC

⇒

Applying the above formula

 $\therefore OP = OQ \quad \text{------ Proved.}$
